
What is Pliny?
• Pliny is about two things. It illustrates

1. some of the potential that arises out of developing software
that supports annotation and notetaking for the
Humanities, and

2. some of the issues for Graphical User Interfaces (GUI) that
should be considered when developing modular software
toolkits.

• This poster is primarily about item 2.

Toolkits for
Humanists:
pipelining

• Much discussion about
toolkits for humanists has
focused on a modular
approach that centers on
data pipelining. – a technique
much used in data
visualisation and related
fields.

• Pipelining has also proven to
be a powerful model for
many textual transformation
(see Wilhelm Ott’s TuStep
for very fine example).

• Pipelining serves certain type
of computing applications
better than others, and is
somewhat foreign to the GUI
interface

From: Bradley and Rockwell (1995). “The Components of a System
for Computer Assisted Text Analysis”. Prepared for the CETH
Workshop on Future Text Analysis Tools”

From: D2K Toolkit User Manual. Automated Learning Group, NCSA.
2003

Annotation and resource enrichment:
direct manipulation

• An important element of scholarly work is enrichment: adding
a new layer of materials on top of base materials:

– TEI markup is often thought of in these terms.
– Annotation/Notetaking is also this kind of activity.

• Annotation/Notetaking cannot be modelled effectively of in
terms of dataflow modularity.

– An annotation tool must be more like an editor than a
transformation utility.

– Like a text editor, annotation needs to feel to the user as if s/he
has “direct manipulation” access to the objects: this is very much
a GUI issue.

Annotating Everything:
Scholarly annotation might apply to all kinds of digital
and non-digital materials. A scholar might want to
annotate anything.
images

application output

process descriptions
Comments added
by researcher
while building the
flow diagram

Tool Modularity: Pliny and Eclipse
• Pliny takes a modular approach to tool component

design based on the Eclipse
(http://www.eclipse.org) model.

• Eclipse (and Pliny) supports modularity in ways
other than just file-sharing, pipe-lining (although, of
course, it provides for these too).

• Much of Eclipse is designed to allow for a sense of
integration at the GUI level – on the screen,
between separately built components.

Workbench
• The eclipse workbench manages the windows layout objects to

manage screen space: panes, menus, toolbars, etc.
• The user can choose to combine GUI elements from different

plugins on the screen at the same time.

• On the following screen displays from a prototype text-analysis
plugin co-exist with conventional Eclipse displays in the
Workbench.

– Behind-the scenes synchronization between screens from
different plugins is possible – so that if a user clicks on a
line in the KWIC display (from the text-analysis tools plugin)
the Eclipse XML text editor can be made to jump to the line
containing the selected word.

Plugins
• In Eclipse a plugin provides a package framework for a

single tool.
• Plugins can contain GUI elements (called by Eclipse

views or editors) that can display in panes on the screen.
• In Pliny/Eclipse one simply places plugin objects in

Eclipse’s (or Pliny’s) plugin folder to “install them”.

My.text-analysis.plugin

Data model

Word list KWIC display

Eclipse.plugins

The Registry and managed Memory
sharing

• Eclipse provides a registry which allows a plugin to offer
services to other plugins.

• Memory sharing can be managed between plugins.
• An object in plugin A can declare (by implementing a Java

Interface) that it has the necessary behaviour to allow it to be
displayed in displays managed by plugin B.

• These mechanisms supports collaboration between different
plugins.

Collaboration between Plugins
• The Virtual Lightbox for Museums and Archives (VLMA) is a framework

developed by University of Reading, the Max Planck Institute for the History
of Science and Oxford Archaeology which gives a user access to an RDF
server managing metadata about images, and the images themselves.

• I took the code for the VLMA and created a prototype VLMA plugin from it
that supported locating and displaying images from the VLMA system within
the Eclipse/Pliny framework.

• Annotation components from the Pliny plugin could co-exist and co-operate
with materials provided by my VLMA plugin.

• The following 2 screenshots show this in operation.

Pliny within VLMA

Annotations
from the
Pliny plugin

Resource Browser from
the VLMA plugin

Object viewer from the
VLMA plugin

VLMA within Pliny

Reference to a VLMA
object

Contribution model
• It is easy to add new components (as plugins) into Pliny/Eclipse, and

allow them to communicate with each other. This has lead to the
language used in Eclipse of a plugin object “making a contribution” to
the operation of another plugin.

• Examples for Pliny
– contributing support for new data formats to Pliny:

• An plugin could be developed for video or audio that stored its
annotations in a Pliny format to allow them to appear on other
Pliny screens.

• A plugin could be developed to support Pliny-like annotation of
XML/TEI documents directly.

• A plugin could be developed to store bibliographic materials
that integrated with Pliny

– Pliny can contribute annotation support to other plugins (such as
the VMLA example)

Implications for Software Development
• The benefits of integration for toolkit development are available

within the Eclipse framework, and I believe are obvious.
• The benefits come at a cost, however:

– Eclipse creates applications, not web sites. Tools such HTML,
CSS, XML and XSLT provide only peripheral assistance to
application development.

– The Eclipse framework operates within Java, but is not built on
the more familiar Sun-Java AWT/Swing/Applets platforms, and
will therefore need to be learned by most Java programmers.

– Development of tools in this way requires a highly professional
attitude to software development, that might go beyond the
resources available to many in the humanities.

Software output from: Bradley and Rockwell (1997). Simweb Correspondance
Analysis Visualizer.

URL: http://tactweb.mcmaster.ca/cgi-dos/simweb/simweb.bat

My.text-analysis.plugin

Data model

Word list KWIC display

Pliny.annotation.plugin
Data model

Resource Explorer Note Editor

VLMA.plugin
Data model

VLMA Browser Object Viewer

Eclipse’s “Plugin folder”
GUI elements

My.gis.plugin

Data modelmap display

• Pliny’s development was made possible by the provision of
research leave for myself at King’s College London.
• I am deeply grateful to KCL, and in particular to the head of
CCH, Harold Short, for making this possible.
• I am also grateful to Willard McCarty with whom I have
spoken from time to time about scholarly research and practice,
and who has given me many useful insights.

Acknowledgements

Conclusions
• Eclipse’s plugin model allows for the development of tools by independent

developers that inter-operate not only at the data level but also at the GUI level –
on the screen.

– This is important for computer users who think of computing in terms of the GUI.
• Pliny provides a set of plugins that support annotation and notetaking – two key

activities within Humanities research
• The Eclipse framework allows both others to contribute new functions to Pliny

(support annotation of other kinds of digital materials, for example), and allows
Pliny to contribute its annotation/notetaking functions to other tools, such as GIS or
Text Analysis plugins.

• Building tools that work together in these ways still requires coordination between
tool builders, but it provides a framework in which such coordination is more
effective.

